If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-16t^2-256t+300=0
a = -16; b = -256; c = +300;
Δ = b2-4ac
Δ = -2562-4·(-16)·300
Δ = 84736
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{84736}=\sqrt{256*331}=\sqrt{256}*\sqrt{331}=16\sqrt{331}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-256)-16\sqrt{331}}{2*-16}=\frac{256-16\sqrt{331}}{-32} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-256)+16\sqrt{331}}{2*-16}=\frac{256+16\sqrt{331}}{-32} $
| v2+1=50 | | 2704=9(9+4x) | | 8b2=648 | | 22.14=4g+3.94 | | 14a-11a=9 | | x/12+14=15 | | 6(f-71)=96 | | 10*42-9y=24 | | -3x+12=10x+10 | | 14u+3=17 | | 8.2=10^x | | 14u+3=17 | | 120-x=120 | | 40=-16t^2+72t+3 | | 10w-28=62 | | 14x+5=8x+29 | | 4q-15=1 | | 4v+4=20-4 | | 14n^2+7n=0 | | x+20=-2x+56 | | 2x-20°+x-10°=90° | | 7x+10=-3x+120 | | 4v+4=20/4 | | x+12=-2x+18 | | 3(x+2)+5(6+x)=84 | | N.5+n=16 | | 8x+40=2+100 | | 10x2-41x-45=0 | | 34=4(y+6)-6y | | -2(r+4)=25 | | 10x2-41x+45=0 | | 180=5x-5+2x-7+x |